Taking a Precision Cancer Medicine Approach to Develop Oncology Drugs That Target Mitosis

Forward-Looking Statements

Certain statements in this presentation are forward-looking within the meaning of the Private Securities Litigation Reform Act of 1995. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Trovagene's expectations, strategy, plans or intentions.

These forward-looking statements are based on Trovagene's current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. While the list of factors presented in the 10-K is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Forward-looking statements included herein are made as of the date hereof, and Trovagene does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Trovagene's Management Team Proven Leadership in Oncology

Scientific Advisors Principal Investigators and Collaborators

Jorge Cortes, MD – MD Anderson

- Deputy Chair, Professor of Medicine, Department of Leukemia and Director of CML and AML programs
- Amer Zeidan, MBBS, MHS Yale
 - Assistant Professor of Medicine

Glenn Bubley, MD – Beth Israel Deaconess Medical Center

- Director, Multidisciplinary Genitourinary Cancer Program
- David Einstein, MD Beth Israel Deaconess Medical Center
 - Principal Investigator, mCRPC Phase 2 Trial

 Filip Janku, MD, PhD – MD Anderson
Associate Professor, Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program)

Michael Yaffe, MD, PhD – MIT

- Director, MIT Center for Precision Cancer Medicine, Professor of Biology and Biological Engineering
- Heinz-Josef Lenz, MD, FACP Norris Comprehensive Cancer Center, USC
 - Associate Director Adult Oncology and Co-Leader Gastrointestinal Cancers

Beth Israel Deaconess Medical Center

Jonsson Comprehensive Cancer Center

Massachusetts Institute of Technology

DANA-FARBER

Strategy for Oncology Drug Development

- Taking a precision cancer medicine approach to develop Onvansertib, a first-in-class, 3rd generation PLK1 inhibitor
- Leveraging a proven cancer target, PLK1
- Incorporating predictive clinical biomarkers

Combining Onvansertib with already approved drugs

- Phase 1b/2 trial of Onvansertib + cytarabine or decitabine in Acute Myeloid Leukemia (AML)
- Phase 2 trial of Onvansertib + abiraterone acetate (Zytiga[®])/prednisone in metastatic Castration-Resistant Prostate Cancer (mCRPC)
- Phase 1b/2 trial of Onvansertib + FOLFIRI and bevacizumab in metastatic Colorectal Cancer (mCRC)

Onvansertib – Pipeline Within a Molecule Opportunities in Leukemias/Lymphomas and Solid Tumors

	Preclinical	Phase 1	Phase 2
Leukemias & Lymphomas		Orphan Drug Designation	
	Metastatic Castration-Resi Phase 2 trial in combination wi	stant Prostate th Zytiga [®] (abiraterone acetate)/	prednisone
	Colorectal (CRC)		
	Lung		
Solid Tumor Cancers	Ovarian		
	Others (adrenocortical, san skin, liver, pancreatic, amp		
	Triple Negative Breast		

Licensed Drug Candidate from NMS Onvansertib – Polo-like Kinase 1 (PLK1) Inhibitor

Oncology Drug Discovery

- Largest oncology research and development company in Italy
- Developed anthracycline class of drugs (doxorubicin)
- Leader in protein kinase drug development (Polo-like Kinase Inhibitors)
- Identification and validation of molecular targets focused on driver oncogenes
- Excellent track record licensing innovative drugs to pharma/biotech companies including: Genentech (Roche), Ignyta (Roche), Novartis

trovagene

Developing Oncology Drugs That Target Mitosis

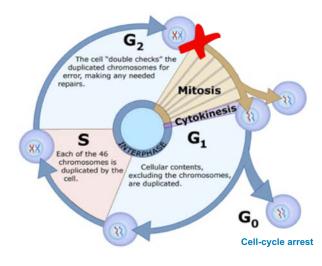
- Licensed global development and commercialization rights for Onvansertib
- Nerviano will continue manufacturing GMP API and finished drug
- Two active INDs in place with the FDA
- Financing in place to advance clinical programs into mid-2019

IND = Investigational New Drug

Nerviano Oncology Portfolio Success

Excellent track record licensing innovative drugs to pharma/biotech companies that have subsequently received FDA breakthrough status and priority review designation

Licensed	Preclinical	Phase 1	Phase 2	Phase 3	Registered
ARRAY	Encorafenib (B-RAF	IP) Melanoma Braf n	nutation in combinatior	n with binimetinib	
Roche Ignyta	Entrectinib (TRK, RC	DS, ALK) Non-Small (Cell Lung	,	
	Milciclib (CDK, other	kinases) Thymic Car	ncer		
trovagene	Onvansertib (PLK1	inhibitor) AML and m	CRPC	•	
SERVIER Oncology	MPS1 Inhibitor Sol	id Tumors			
Genentech A Member of the Roche Group	ADC (PNU-652)				
BioTherapeutics	ADC (NMS-P945)				


Leveraging a Proven Cancer Target

PLK1 – Established Target for Cancer Therapy

PLK1 Plays a Critical Role in Initiation, Maintenance and Completion of Mitosis

- Polo-like Kinase 1 (PLK1)
 - Belongs to a family of kinases (PLK1,2,3,4,5)
 - Dysfunction leads to cancer formation and progression
 - Over-expressed in dividing cancer cells
 - Inhibition leads to cancer cell death

¹Liu et al- PLK1, A Potential Target for Cancer Therapy; Translational Oncology – Vol. 10 – pp. 22-32; February 2017

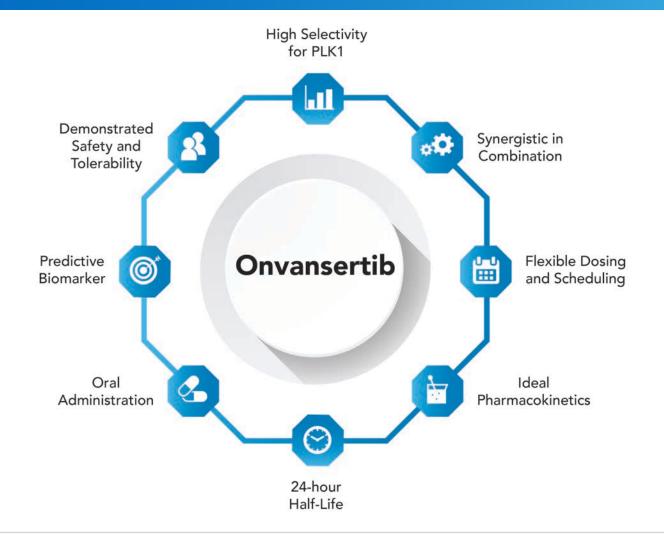
PLK1 – Over-Expressed in Multiple Cancers

Publications

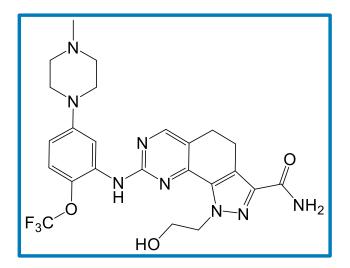
Tumor Type	PLK1 Fold Change Over-Expression	
AML	13.0	
B-cell Lymphoma	56.3	
Prostate	3.3	
Adrenocortical	4.5	
Lung Adeno	9.7	
Lung Squamous	20.8	
Breast	11.3	
Esophageal	10.2	
Stomach	4.8	
Colon	2.5	
Head & Neck	4.2	
Pancreatic	2.2	
Ovarian	31.7	
Glioblastoma	12.4	
Kidney	4.7	
Liver	11.7	
Uterine	21.3	
Bladder	9.1	

Over-Expression of PLK1 Observed in Numerous Cancers¹

¹Liu et al- PLK1, A Potential Target for Cancer Therapy; Translational Oncology – Vol. 10 – pp. 22-32; February 2017



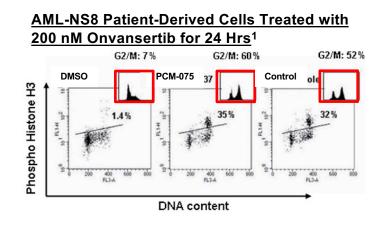
Developing Onvansertib First-in-Class 3rd Generation PLK1


Onvansertib First-in-Class 3rd Generation PLK1 Best-in-Class Attributes

Onvansertib Intellectual Property

- Four worldwide patent families
 - Genus, Compound, Combinations, Salt
- Mature portfolio
 - Granted in most major jurisdictions
- Patent term 2030 plus up to 5 years extension

Onvansertib – Highly-Selective Only for PLK1


Selective PLK1 Inhibitor

- Tested against >260 kinases
- PLK1 was the only active target (IC₅₀ of 2nM)

PLK Member	Onvansertib IC50* (μΜ)	
PLK1	0.002	
PLK2	> 10	
PLK3	> 10	

Causes cancer cell death by G₂M arrest

Onvansertib blocks cell division (mitosis)

¹Data on File, Trovagene, Inc.

Onvansertib Phase 1 Safety Trial¹ Favorable First-in-Human Data

Phase 1 Dose Escalation Trial in Patients with Advanced or Metastatic Solid Tumors

Trial Design

Open-label dose escalation to assess safety and identify Phase 2 dose

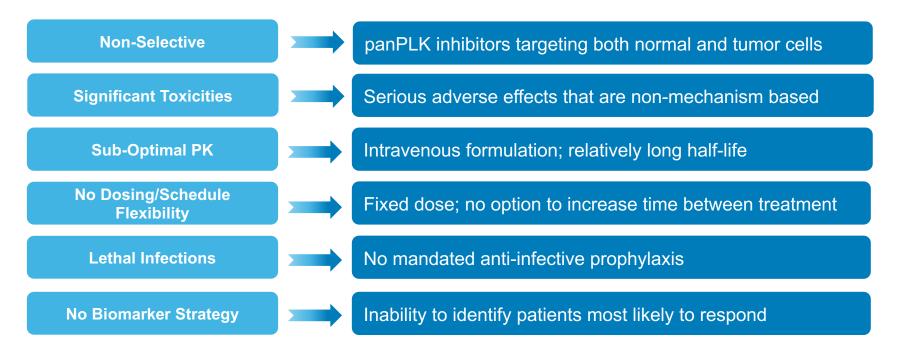
19 patients administered Onvansertib orally, once daily for 5 consecutive days, every 21-days

Solid Tumors: colorectal, pancreatic, lung, sarcomas, hepatocellular, ampullary, prostate, ovarian, skin

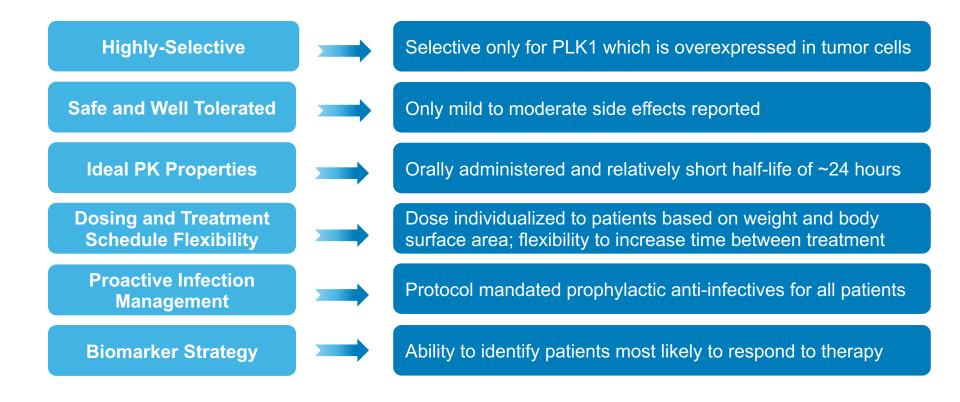
Trial Results

- Established safety and identified Phase 2 dose of 24 mg/m²/day
- 2. 16 patients evaluable with 30% stable disease
- 3. Only mild to moderate side effects
- 4. No GI disorders, mucositis, or hair loss

¹Weiss G et al., Phase I dose escalation study of NMS-1286937, an orally available Polo-like Kinase 1 inhibitor, in patients with advanced or metastatic solid tumors – Invest. New Drugs DOI 10.1007/s10637-017-0491-7

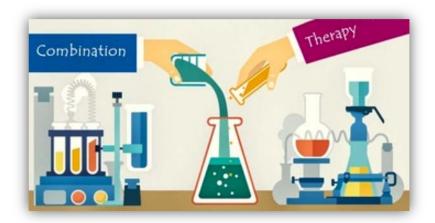

Benefiting From Drug Class Experience

Drawbacks Associated with 1st and 2nd Generation PLK Inhibitors


- Prior PLK inhibitors in development demonstrated significant clinical activity in combination with standard-of-care chemotherapy in AML
- Major drawbacks, unrelated to efficacy of the drug class, resulted in discontinuation of development

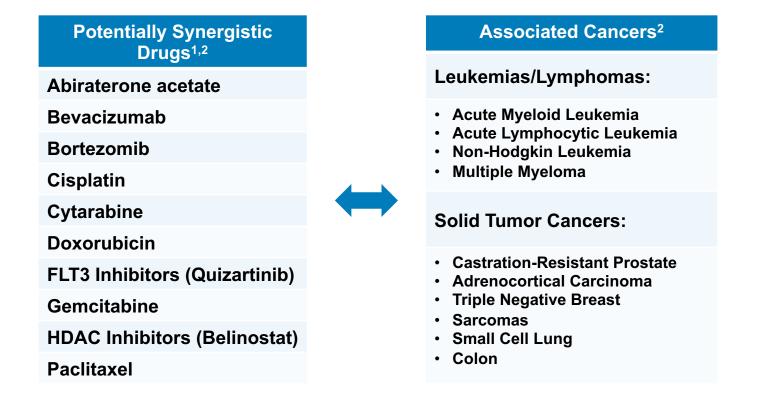
Onvansertib – First-in-Class, 3rd Generation PLK1 Addresses Drawbacks of 1st and 2nd Generation

Onvansertib product profile and clinical development program effectively addresses drawbacks associated with 1st and 2nd generation PLK inhibitors



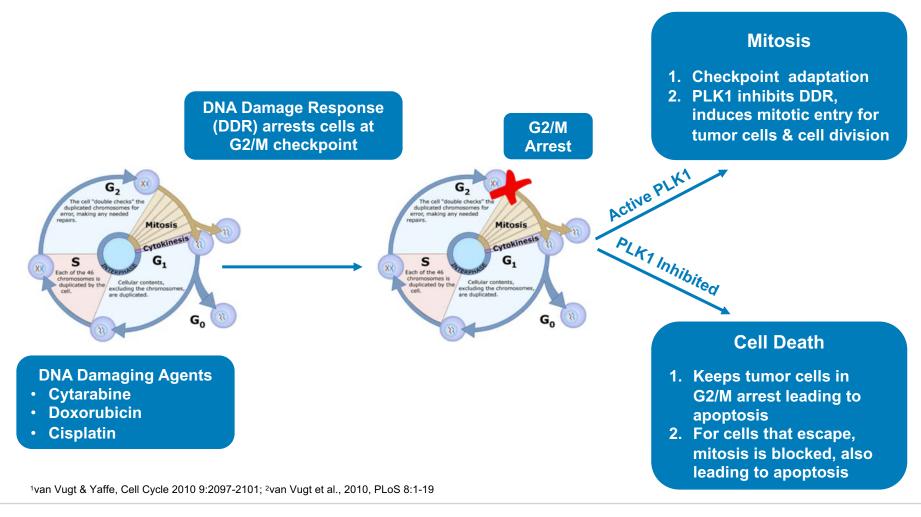
Combination Therapy Approach

Onvansertib Combination Therapy Strategy


- Cornerstone of precision cancer medicine
- Onvansertib has demonstrated synergy with chemotherapies and targeted therapeutics
- Enhances efficacy (targets key pathways by synergy or additive effect)
- Reduces drug resistance, while providing therapeutic benefits

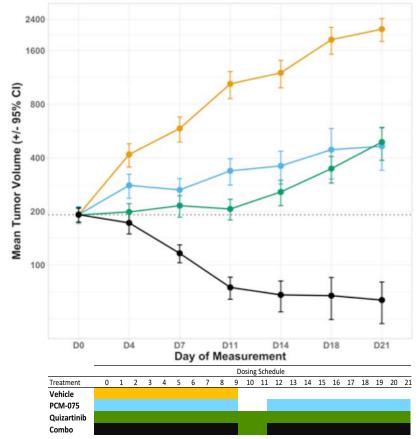
¹Mokhtari, R et al - Combination Therapy in Combatting Cancer – Oncotarget, 2017, Vol. 8 (No. 23), pp: 38022-38043

Onvansertib – Synergistic in Combination


- High PLK1 expression is associated with the most aggressive cancers
- Synergistic activity may enhance efficacy of standard-of-care therapies

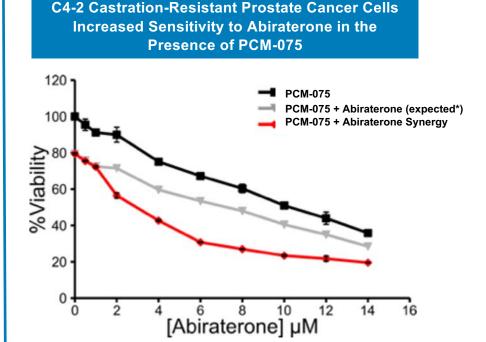
¹Alphabetical order. ²Preclinical data on file with PCM-075 and these combined therapeutics

Onvansertib Rationale for Combination with DNA Damaging Agents^{1,2}



Onvansertib (PCM-075) + FLT3 Inhibitor Acute Myeloid Leukemia (AML)

- 30% of AML patients have a FLT3 mutation¹
- Quizartinib in Phase 3 clinical development²
- Combination of PCM-075 + quizartinib demonstrated:
 - 97% tumor growth inhibition
 - Regression in FLT3 AML xenograft model³



 1 Kindler et al, Blood 2010; 116:5089-10. 2 Stone et al, N Engl J Med 2017; 377:454-64. 3 Data on File at Trovagene, Inc.

Onvansertib (PCM-075) + Abiraterone Metastatic Castration-Resistant Prostate Cancer

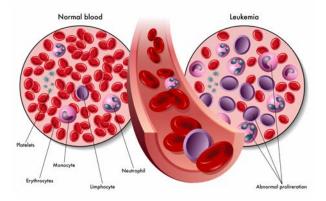
- PCM-075 + abiraterone demonstrated synergy¹
- Combination enhances PCM-075 mechanism of action¹
- Medical need to increase duration of response to antiandrogen drugs

*Expected = the calculated value of the effect of the addition of each drug as calculated by Michael Yaffe, MD - MIT

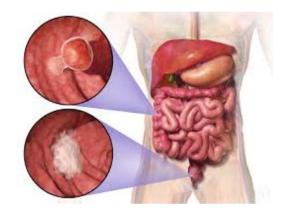
¹Yaffe, Michael, MD and Trovagene, 2017

Onvansertib (PCM-075) Clinical Development

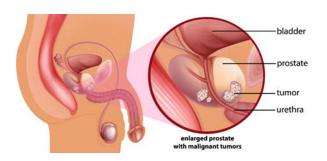
Phase 1b/2 Acute Myeloid Leukemia (AML)


Phase 2 metastatic Castration-Resistant Prostate Cancer (mCRPC)

Phase 2 metastatic Colorectal Cancer (mCRC)

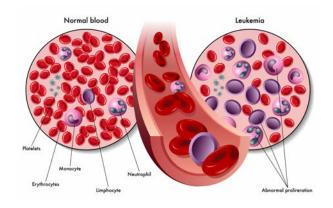


Clinical Development Roadmap


Acute Myeloid Leukemia

Colorectal Cancer

Prostate Cancer



Acute Myeloid Leukemia¹ Significant Need for New Treatment Options

- Aggressive hematologic malignancy of immature blood cells
- 20,000 new cases, 10,400 deaths annually, and 5 year survival rate of 25%
- Treatment options vary based on patient condition / age, but can include:
 - Chemotherapy / Radiation / Stem Cell Transplant
- Preclinical *in-vitro* and *in-vivo* data demonstrate efficacy of Onvansertib* as single agent and in combination with drugs used to treat AML

Acute Myeloid Leukemia

*Orphan Drug Designation granted for Onvansertib by the FDA September, 2017 and by the EMA in July, 2018 ; National Cancer Institute SEER 2016; Valsasina et al., Mol Cancer Ther; 11(4) April 2012

AML Clinical Development Landscape¹ Medical Need for New Therapeutic Options

- The majority of therapeutic advances for AML have not come from the introduction of novel therapeutics but instead from optimizing use of older drugs²
- With increased understanding of the molecular pathogenesis of AML in recent years there is a significant opportunity to introduce new targeted therapeutics²

Company	Market Cap	Drug	Combination	Development
trovagene	\$15M	Onvansertib (PLK1 inhibitor)	Cytarabine / Decitabine	Phase 1b/2
BIOPHARMA	\$104M	Tosedosat (aminopeptidase activity inhibitor)	Cytrabine / 5-Azacytadine	Phase 1/2
ONCOLOGY	\$288M	Ficlatuzumab (antibody targeting HGF)	Cytarabine	Phase 1
ᠵ agios	\$4.5B	Tibsovo (IDH1Inhibitor)	Single Agent	FDA Approved
		AG-221 (IDH2 Inhibitor)	Single Agent	Phase 1/2

Significant Opportunity for New Therapeutic Options

¹<u>www.clinicaltrials.gov</u>; ²www.hematology.org/Thehematologist/Years-Best/8155.aspx

Onvansertib (PCM-075) Scientific Rationale Clinical Development in AML

in-vitro studies¹

– High sensitivity of hematological tumor cell lines to PCM-075

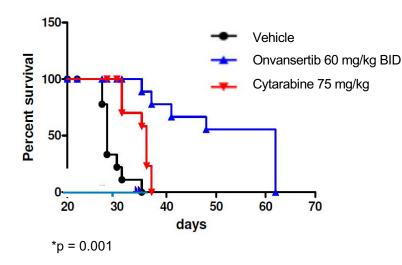
in-vitro and in-vivo mode of action (MoA) studies²

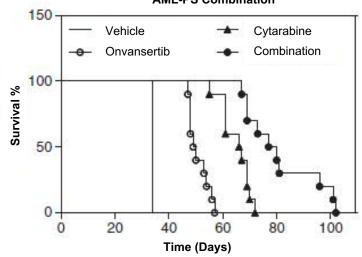
 Xenograft model demonstrates dose dependent inhibition of PLK1 activity and G2/M arrest

in-vivo efficacy in AML xenograft models²

- Dose dependent efficacy of PCM-075 in
 - HL60 promyelocytic leukemia xenograft
 - Disseminated AML patient derived xenografts (AML-PS)
- Combination of PCM-075 + cytarabine has greater survival than either agent alone (AML-PS)

¹Source: Report No. N-0018670 Antiproliferative activity of NMS-1286937 in a panel of cell lines;²Valsasina et al., Mol Cancer Ther; 11(4) April 2012; ³ClinicalTrials.gov, NCT03303339: PCM-075 in Combination With Either Low-dose Cytarabine or Decitabine in Adult Patients With Acute Myeloid Leukemia (AML) - Data-on-file, Trovagene 2018


Orphan Drug Designation (ODD) in AML

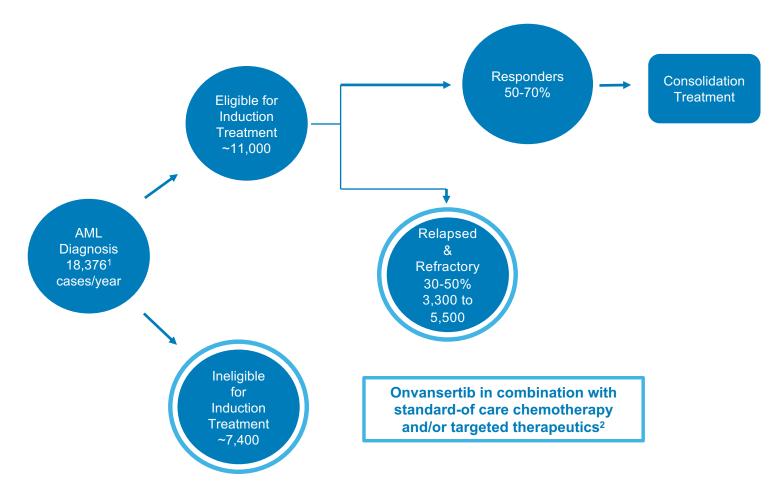


Onvansertib Comparative and Combination with Cytarabine in AML Models^{1,2}

In Vivo Disseminated Leukemia Models

- Onvansertib 60 mg/kg BID (Days 1-2 with 5-day rest) + cytarabine 75 mg/kg IP Injection (Days 1-5 with 5-day rest)
- Onvansertib 120 mg/kg for 2 days repeated for 4 cycles with a 10-day rest

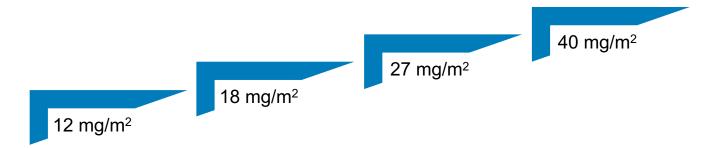
AML-PS Combination


- Onvansertib 120 mg/kg for 2 days repeated for 4 cycles with a 10-day rest
- Cytarabine IP at 75mg/kg for 5 cycles of 5 consecutive days with 7-day rest
- The combination was given at the same schedule, doses, and routes of the single agents

Onvansertib + cytarabine in combination showed increased survival compared to either agent alone

¹Casolaro et al. (2013) PLOS One 8(3); ²Valsasina et al. (2012), Mol Cancer Ther 11(4)

Onvansertib Positioning in AML Patient Selection Algorithm

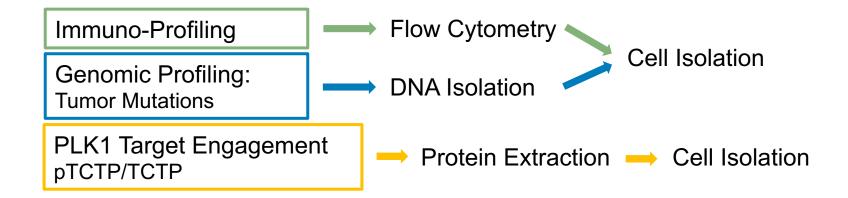

¹Visser et al. (2012), Eur J Cancer (48). Estimated cases in EU27 per year; ²e.g. Midostaurin for FLT3 mutation

Ongoing Phase 1b/2 Clinical Trial in AML

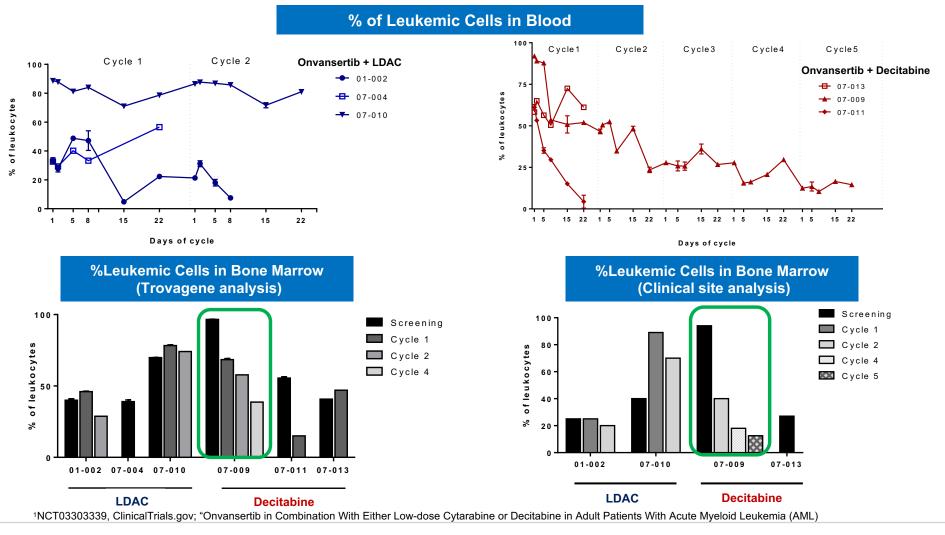
Onvansertib in Combination with Either Low-Dose Cytarabine or Decitabine in Patients with Acute Myeloid Leukemia (AML)

Phase 1b: Dose escalation to assess safety and identify recommended Phase 2 dose

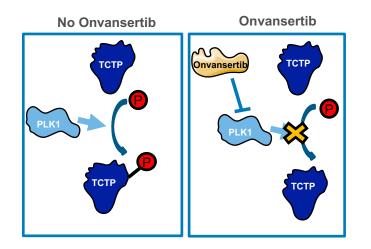
Administered orally, once daily on days 1-5 of each cycle (21-28 days)


Phase 2: Assess safety and preliminary antitumor activity

- Efficacy Endpoints: Rate of complete response (CR + CRi) defined as morphologic leukemia-free state (MLF)
- **Exploratory Endpoints:** Evaluation of pharmacodynamic and correlative biomarkers


Biomarker Strategy in AML

- Biomarkers will be measured and correlated with pharmacokinetic drug levels to assess:
 - Treatment effects by measuring % blast cells in blood and bone marrow
 - Inhibition of PLK1 by Onvansertib (Target Engagement)
 - Correlating underlying tumor genetics with treatment response

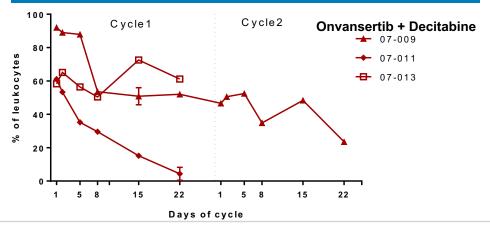

Immuno-Profiling: Monitoring Leukemic Blast Cells in Response to Treatment

Target Engagement: Monitoring PLK1 Inhibition Upon Treatment

The Translational Control Tumor Protein (TCTP) Identified as Specific Marker for PLK1 Activity In-Vivo¹

- Onvansertib inhibits PLK1 kinase activity resulting in reduction in PLK1 substrates phosphorylation; Translational Control Tumor Protein (TCTP) is phosphorylated by PLK1
- PLK1 inhibition was assessed 3-hours following administration of Onvansertib at peak concentration (C_{max})

¹Cusshi U. et al, Phosphorylation of TCTP as a Marker for Polo-like Kinase 1 Activity In Vivo – Anticancer Research December 2010 vol. 30 no. 12 pp. 4973-4985

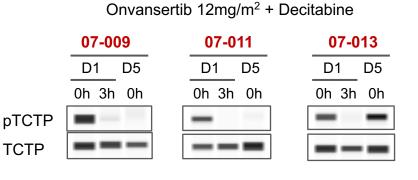


Correlation of Target Engagement and **Treatment Response**

% of Leukemic Cells in Blood Onvansertib + LDAC Cycle 1 Cycle 2 100 01-002 80 07-004 % of leukocytes 07-010 60 40 20 0 58 22 5 15 22 1 15 8

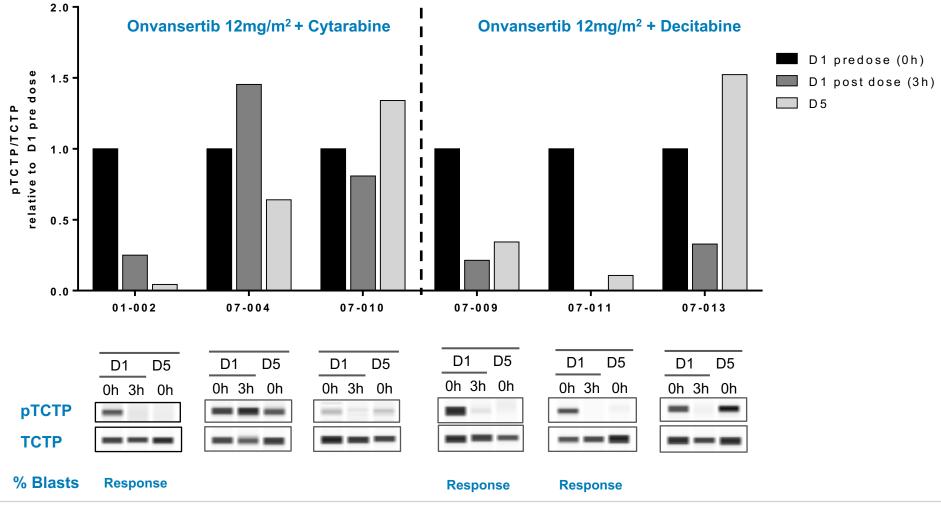
Days of cycle

% of Leukemic Cells in Blood

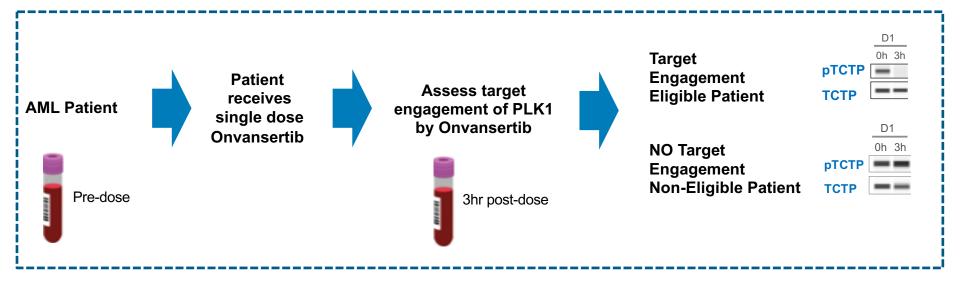


pTCTP status as a surrogate for PLK1 inhibition

Onvansertib 12mg/m² + LDAC


	01-002	07-004	07-010
	D1 D5	D1 D5	D1 D5
	0h 3h 0h	0h 3h 0h	0h 3h 0h
pTCTP	_		
ТСТР			

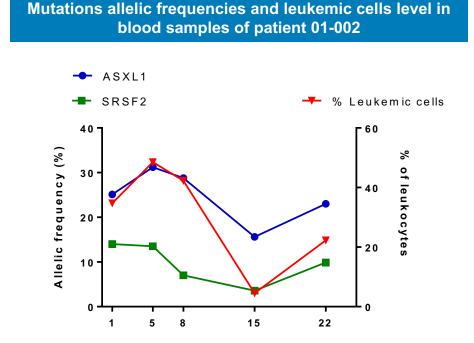
pTCTP status as a surrogate for PLK1 inhibition


Summary of Target Engagement and Correlation to Treatment Response

Predictive Response Strategy

¹Trovagene Patent Pending – PLK1 Target Phosphorylation Status and Treatment of Cancer with PLK1 Inhibitors

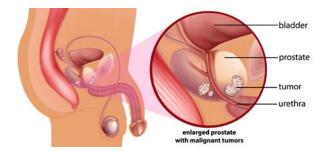
Molecular Profiling and Patient Response in AML¹


AML Genomic Subgroup	Frequency of Patients	Most Frequently Mutated Genes (%)	DNA Panel	RNA Panel
NPM1 mutation	27%	NPM1(100), DNMT3A(54), FLT3(39), NRAS(19), TET2(16), PTPN11(15)	x	
Mutated chromatin, RNA-splicing genes, or both	18%	RUNX1(39), MLLPTD(25), SRSF2(22), DNMT3A(20), ASXL1(17), STAG2(16), NRAS(16),TET2(15),FLT3ITD(15)	x	
TP53mutations, chromosomal aneuploidy, or both	13%	Complex karyotope(68), -5/5q(47), -7/7q(44), TP53(44), -17/17p(31), +8/8q(16)	x	x
inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11	5%	inv(16) (100), NRAS(53), +8/8q(16), KIT(15), FLT3TKD(15)	x	x
biallelic CEBPA mutations	4%	CEBPAbiallelic(100), NRAS(30), WT1(21), GATA2(20)	x	
t(15;17)(q22;q12); PML-RARA	4%	t(15;17) (100), FLT3 ITD(35), WT1(17)	x	x
t(8;21)(q22;q22); RUNX1-RUNX1T1	4%	t(8;21) (100), KIT(38), -Y(33), -9q(18)	x	x
MLL fusion genes; t(x;11)(x;q23)	3%	t(x;11q23) (100), NRAS(23)	x	x
inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2,MECOM(EVI1)	1%	inv(3) (100), -7(85), KRAS(30), NRAS(30), PTPN11(30), ETV6(15), PHF6(15), SF3B1(15)	x	x
IDH2R172 mutations and no other class-defining lesions	1%	IDH2R172(100), DNMT3A(67), +8/8q(17)	x	
t(6;9)(p23;q34); DEK-NUP214	1%	t(6;9) (100), FLT3ITD(80), KRAS(20)	x	x

¹Papaemmanuil et al. Genomic classification and prognosis in acute myeloid leukemia; NEJM 2016;374:2209-2221

Genomic Profiling: Correlation of Mutation Detected in Blood and % Leukemic Cells

Patient	Mutations detected		
	ASXL1	c.1926_192	7insG p.G646fs*12
01-002	SRSF2	c.284C>G	p.P95R
07-004	TP53	c.955 A>T	p.Lys319Ter
	SRSF2	c.284C>G	p.Pro95Arg
	RUNX1	c.511G>A	p.Asp171Asn
07-010	RUNX1	c.250A>C	p.Thr84Pro
	TET2	c.3633T>A	p.Cys1211Ter
	SF3B1	c.1998G>T	p.Lys666Asn
07-009	FLT3	c.250G>T	p.Asp835Tyr
07-005	RUNX1	c.984_9850	leIAG p.Ala329fs
	GATA2	c.829A>G	p.Ser277Gly
07-011	TP53	c.773A>C	p.Glu258Ala
07-013	PHF6	c.955C>T	p.Arg319Ter
07-015	GATA2	c.962T>C	p.Leu321Pro


- Genomic analysis was performed on bone marrow and blood samples
- Mutations detected in bone marrow and blood were identical for all patients examined
- The mutation allelic frequencies detected in blood correlates with % of circulating leukemic cells

Metastatic Castration-Resistant Prostate Cancer Opportunity to Increase Duration of Response to Therapy

- 25,000 men die from metastatic prostate cancer annually and the five-year survival rate is 37%²
- Treatments
 - Zytiga® (Johnson & Johnson)/prednisone
 - Xtandi[®] (Astellas/Pfizer)
- Ongoing need to increase duration of response to treatment
 - Patients develop resistance within 9-15 months⁴ and do not respond well to subsequent therapies
- Preclinical studies demonstrate synergy between Onvansertib and Zytiga[®]
 - PLK1 inhibition improves abiraterone efficacy by repressing the androgen signaling pathway^{3,4}

Prostate Cancer

¹2017 Annual Report on Prostate Disease – Harvard Health Publications; ²GlobalData. Prostate Cancer—Global Drug Forecast and Market Analysis to 2023. Apr, 2015; ³ National Cancer Institute Metastatic cancer. Mar, 2013. Available at: http://www.cancer.gov/about-cancer/what-is-cancer/metastatic-fact-sheet; ⁴GAntonarakis, Emmannel – Current Understanding of Resistance to Abiraterone and Enzalutamide in Advanced Prostate Cancer; Clinical Advances in Hematology & Oncology – May 2016 – Volume 14, Issue 5

PLK1 and Abiraterone Acetate (Zytiga[®]) Metastatic Castration-Resistant Prostate Cancer (mCRPC)

- All metastatic prostate cancer patients become castration-resistant
- PLK1 dependent microtubule dynamics promotes androgen receptor (AR) signaling^{1,2}
- PLK1 inhibition improves abiraterone efficacy³
- Inhibition of PLK1 represses androgen signaling pathway⁴
- PLK1 inhibitors may add important therapeutic benefit for the treatment of castration-resistant prostate cancer patients⁵

¹Xianzeng, Hou, Zhiguo, Li – PLK1-Dependent Microtubule Dynamics Promotes Androgen Receptor Signaling in Prostate Cancer; Prostate. 2013 September; 73(12): 1352– 1363. doi:10.1002/pros.22683; ² Arpaporn, Deeraksa, Jing, Pan - Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis; Oncogene. 2013 June 13; 32(24): 2973–2983. doi:10.1038/onc.2012.309; ³Clemens, Thoma – Prostate Cancer: PLK-1 Inhibition Improves Abiraterone Efficacy; Nature Reviews Urology volume11, page603 (2014); ⁴Zhang Z1, Chen L – Inhibition of PLK1 Represses Androgen Signaling Pathway in Castration-Resistant Prostate Cancer; Cell Cycle. 2015;14(13):2142-8. doi: 10.1080/15384101.2015.1041689; ⁵Klaus, Strebhardt - Drugging Plk1: An attractive approach to inhibit androgen receptor signaling; Cell Cycle. 2015 Jul 18; 14(14): 2193–2194

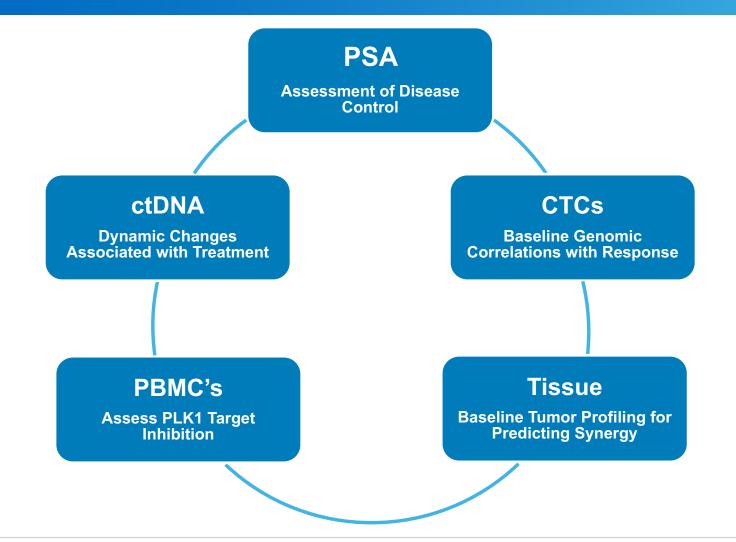
Ongoing Phase 2 Clinical Trial in mCRPC

Onvansertib in Combination with Zytiga[®] and Prednisone in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC)

Efficacy Endpoints

Effect of Onvansertib in combination with Zytiga[®]/prednisone on disease control assessed by prostate-specific antigen (PSA) decline or stabilization pre- and post-treatment

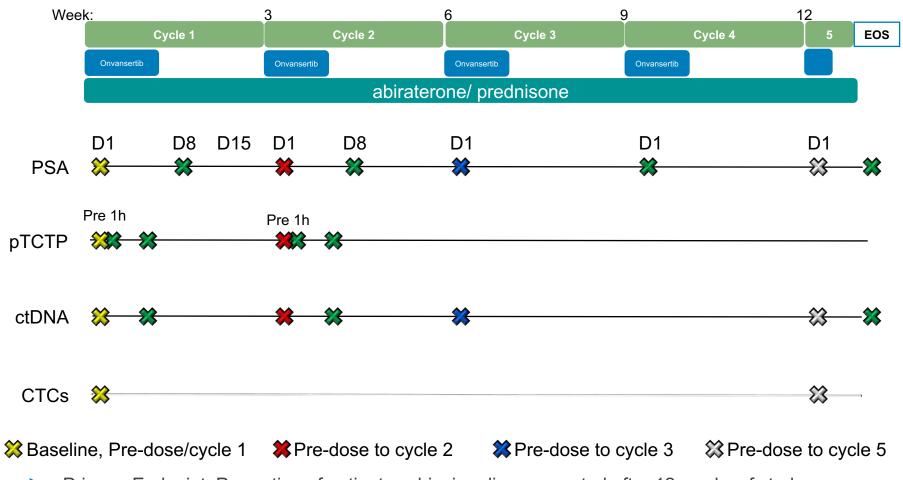
Safety Endpoint


Safety of Onvansertib in combination with Zytiga®/prednisone

Exploratory Endpoint

Target inhibition of PLK1, evaluation of relevant biomarkers and correlation with patient response and genomic profile

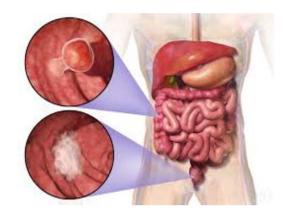
Biomarker Strategy in mCRPC


PSA: NCCN Recommended Biomarker Trial Eligibility and Efficacy for mCRPC¹

- PSA is a validated biomarker assessing disease stability or progression
- Prostate Cancer Clinical Trials Working Group (PCWG)¹ has set criteria for the use of blood PSA levels:
 - Trial eligibility (defining progression)
 - Initial assessment of efficacy

¹PCWG2: Sher et al, JCO, 2008, PCWG3: Sher et al, JCO, 2016

Biomarker Assessment Schedule


Primary Endpoint: Proportion of patients achieving disease control after 12 weeks of study treatment, as defined by lack of PSA progression

Colorectal Cancer: Unmet need in mCRC

- 140K new cases of CRC in 2018 with 64.5% 5 year survival¹
 - ~51K deaths per year from mCRC¹
- Tumor biomarkers drive therapy decisions for 1st line mCRC therapy²
 - ~50% mCRC is RAS mutant (KRAS): FOLFOX/FOLFIRI/FOLFOXIRI
- Large unmet need in RAS mutant CRC²
 - No targeted therapies are available for RAS mutant CRC
 - 2nd line therapies have ~5% response rate in metastatic CRC (mCRC)

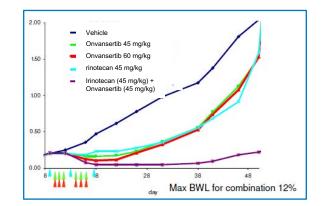
Colorectal Cancer

¹https://seer.cancer.gov/statfacts/html/colorect.html; ²King et al, Frontline Strategies for Metastatic CRC, 2016, Amer J Hem/Onc; Loree&Kopetz, Recent Developments in treatment of mCRC, 2017, Ther Adv Med Onc;

Onvansertib in Pre-Clinical CRC Synergy with Irinotecan¹

- In vitro:
 - CRC cell lines are sensitive to Onvansertib:

25/27 cell lines tested had an IC50<1uM and 10 had an IC50<0.1uM

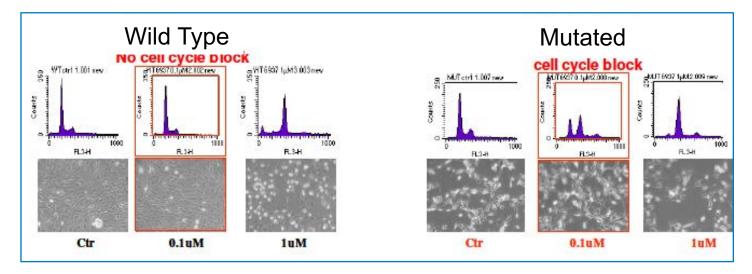

 Onvansertib is synergistic with paclitaxel, cisplatin, SN-38 and irinotecan

In-vivo:

 Onvansertib inhibits tumor growth of CRC xenograft models

3 independent models were tested and Onvansertib induces maximal tumor regression of ~84% compared to vehicle

 The combination of Onvansertib with Irinotecan significantly reduces tumor growth compared with vehicle or either single agent treatment

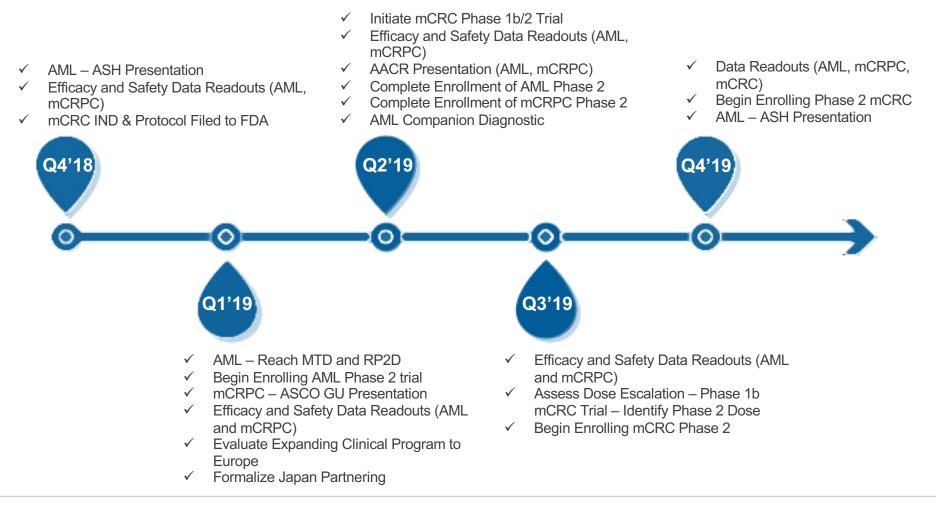


¹Data on File at Trovagene, Inc.

KRAS Mutation: Multiple *in-vitro* Studies Indicate Mutation is Biomarker for Onvansertib Sensitivity

- In a genome-wide RNAi screen there was found a synthetic lethal interactions (profound mitotic block/death) with KRAS oncogene and PLK1; Tested in 2 mutant & isogenic cell lines¹
- KRAS-mutant cancer cell lines are more sensitive to PLK1 inhibition (BI2536)²
- KRAS mutated NIH3T3 cells showed higher sensitivity to onvansertib compare to KRAS wild-type (WT) cells³

¹Luo J, Elledge SJ, Cell. 2009; ²Wang J., Liu M., Nat.Comm,2016; ³Investigator Brochure, Data-on-file, Trovagene



Value Creating Milestones

Precision Cancer Medicine, predictive biomarker approach

Leveraging a proven cancer target, PLK1

Onvansertib – first-in-class, 3rd generation, oral PLK1 inhibitor

Synergy strategy – Onvansertib in combination with approved drugs

For additional information or questions please contact: ir@trovagene.com

